PUBLICATIONS > Biopsies: next-generation biospecimens for tailoring therapy
25 June 2013
Biopsies: next-generation biospecimens for tailoring therapy
Authors: Mark Basik, Adriana Aguilar-Mahecha, Caroline Rousseau, Zuanel Diaz, Sabine Tejpar, Alan Spatz, Celia M. T. Greenwood & Gerald Batist
Abstract
The majority of samples in existing tumour biobanks are surgical specimens of primary tumours. Insights into tumour biology, such as intratumoural heterogeneity, tumour–host crosstalk, and the evolution of the disease during therapy, require biospecimens from the primary tumour and those that reflect the patient’s disease in specific contexts. Next-generation ‘omics’ technologies facilitate deep interrogation of tumours, but the characteristics of the samples can determine the ultimate accuracy of the results. The challenge is to biopsy tumours, in some cases serially over time, ensuring that the samples are representative, viable, and adequate both in quantity and quality for subsequent molecular applications. The collection of next-generation biospecimens, tumours, and blood samples at defined time points during the disease trajectory—either for discovery research or to guide clinical decisions—presents additional challenges and opportunities. From an organizational perspective, it also requires new additions to the multidisciplinary therapeutic team, notably interventional radiologists, molecular pathologists, and bioinformaticians. In this Review, we describe the existing procedures for sample procurement and processing of next-generation biospecimens, and highlight the issues involved in this endeavour, including the ethical, logistical, scientific, informational, and financial challenges accompanying next-generation biobanking.
Key Points
- Next-generation biospecimens are biopsy-type clinical specimens collected from patients at distinct time points and in a prespecified clinical context of treatment, made available for multidimensional high-throughput technologies
- Biopsies of recurrent primary or metastatic tumours are highly sought after next-generation biospecimens for both research purposes and the clinical management of patients
- Controlling preanalytical variables is critical to ensure that the results of multidimensional high-throughput profiling are accurate and reproducible
- Standard operating procedures for biospecimen collection and processing, with quality assurance of every specimen, must be developed and adhered to, with particular emphasis placed on the training of personnel
- Collection of next-generation biospecimens requires increased resources and a multidisciplinary team consisting of interventional radiologists and molecular pathologists
- 24 September 2013In the original published version of this article, the link in reference 106 was incorrect and should have referred to the Biospecimen Research Database of the NCI (page 444 of the article). This reference has now been corrected for the HTML and PDF versions of the article.
References
- Lovly, C. M. et al. Routine multiplex mutational profiling of melanomas enables enrollment in genotype-driven therapeutic trials. PLoS ONE 7, e35309 (2012).CAS PubMed PubMed Central Article Google Scholar
- Von Hoff, D. D. et al. Pilot study using molecular profiling of patients’ tumors to find potential targets and select treatments for their refractory cancers. J. Clin. Oncol. 28, 4877–4883 (2010).CAS Article PubMed Google Scholar
- Roychowdhury, S. et al. Personalized oncology through integrative high-throughput sequencing: a pilot study. Sci. Transl. Med. 3, 111ra121 (2011).PubMed PubMed Central Article CAS Google Scholar
- Desai, A. N. & Jere, A. Next-generation sequencing: ready for the clinics? Clin. Genet. 81, 503–510 (2012).CAS PubMed Article Google Scholar
- Blow, N. Biobanking: freezer burn. Nat. Methods 6, 173–178 (2009).CAS Article Google Scholar
- International Cancer Genome Consortium et al. International network of cancer genome projects. Nature 464, 993–998 (2010).
- Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455, 1061–1068 (2008).
- Cancer Genome Atlas Research Network. Integrated genomic analyses of ovarian carcinoma. Nature 474, 609–615 (2011).
- Cancer Genome Atlas Research Network. Comprehensive molecular portraits of human breast tumours. Nature 490, 61–70 (2012).
- Cancer Genome Atlas Research Network Comprehensive molecular characterization of human colon and rectal cancer. Nature 487, 330–337 (2012).
- Cancer Genome Atlas Research Network. Comprehensive genomic characterization of squamous cell lung cancers. Nature 489, 519–525 (2012).
- The Cancer Genome Atlas. TCGA Tissue Sample Requirements: High Quality Requirements Yield High Quality Data [online], (2013).
- Koh, S. S. et al. Differential gene expression profiling of primary cutaneous melanoma and sentinel lymph node metastases. Mod. Pathol. 25, 828–837 (2012).CAS PubMed Article Google Scholar
- Shah, S. P. et al. Mutational evolution in a lobular breast tumour profiled at single nucleotide resolution. Nature 461, 809–813 (2009).CAS PubMed Article Google Scholar
- Ding, L. et al. Genome remodelling in a basal-like breast cancer metastasis and xenograft. Nature 464, 999–1005 (2010).CAS PubMed PubMed Central Article Google Scholar
- Turajlic, S. et al. Whole genome sequencing of matched primary and metastatic acral melanomas. Genome Res. 22, 196–207 (2012).CAS PubMed PubMed Central Article Google Scholar
- Gerlinger, M. et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N. Engl. J. Med. 366, 883–892 (2012).CAS PubMed PubMed Central Article Google Scholar
- Aurilio, G. et al. Discordant hormone receptor and human epidermal growth factor receptor 2 status in bone metastases compared to primary breast cancer. Acta Oncol. http://dx.doi.org/10.3109/0284186X.2012.754990.
- Botteri, E. et al. Biopsy of liver metastasis for women with breast cancer: impact on survival. Breast 21, 284–288 (2012).PubMed Article Google Scholar
- Gray, J. Cancer: Genomics of metastasis. Nature 464, 989–990 (2010).CAS PubMed Article Google Scholar
- Shi, H. et al. Melanoma whole-exome sequencing identifies (V600E)B-RAF amplification-mediated acquired B-RAF inhibitor resistance. Nat. Commun. 3, 724 (2012).PubMed PubMed Central Article CAS Google Scholar
- Doebele, R. C. et al. Mechanisms of resistance to crizotinib in patients with ALK gene rearranged non-small cell lung cancer. Clin. Cancer Res. 18, 1472–1482 (2012).CAS PubMed PubMed Central Article Google Scholar
- Flaherty, K. T. et al. Combined BRAF and MEK inhibition in melanoma with BRAF V600 mutations. N. Engl. J. Med. 367, 1694–1703 (2012).CAS PubMed PubMed Central Article Google Scholar
- Gorges, T. M. & Pantel, K. Circulating tumor cells as therapy-related biomarkers in cancer patients. Cancer Immunol. Immunother. 62, 931–939 (2013).CAS PubMed Article Google Scholar
- US National Library of Medicine. Clinicaltrials.gov [online], (2013).
- Dawson, S. J. et al. Analysis of circulating tumor DNA to monitor metastatic breast cancer. N. Engl. J. Med. 368, 1199–1209 (2013).CAS Article Google Scholar
- Misale, S. et al. Emergence of KRAS mutations and acquired resistance to anti-EGFR therapy in colorectal cancer. Nature 486, 532–536 (2012).CAS PubMed PubMed Central Article Google Scholar
- Murtaza, M. et al. Non-invasive analysis of acquired resistance to cancer therapy by sequencing of plasma DNA. Nature 497, 108–112 (2013).CAS Article Google Scholar
- Overman, M. J. et al. Use of research biopsies in clinical trials: are risks and benefits adequately discussed? J. Clin. Oncol. 31, 17–22 (2013).PubMed Article Google Scholar
- Goulart, B. H. et al. Trends in the use and role of biomarkers in phase I oncology trials. Clin. Cancer Res. 13, 6719–6726 (2007).CAS PubMed PubMed Central Article Google Scholar
- Subramanian, J. & Simon, R. Gene expression-based prognostic signatures in lung cancer: ready for clinical use? J. Natl Cancer Inst. 102, 464–474 (2010).CAS PubMed PubMed Central Article Google Scholar
- Liu, G. et al. Pharmacogenetic analysis of BR.21, a placebo-controlled randomized phase III clinical trial of erlotinib in advanced non-small cell lung cancer. J. Thorac. Oncol. 7, 316–322 (2012).CAS PubMed Article Google Scholar
- Choi, Y. L. et al. EML4-ALK mutations in lung cancer that confer resistance to ALK inhibitors. N. Engl. J. Med. 363, 1734–1739 (2010).CAS PubMed PubMed Central Article Google Scholar
- Sharma, M. R. & Schilsky, R. L. Role of randomized phase III trials in an era of effective targeted therapies. Nat. Rev. Clin. Oncol. 9, 208–214 (2011).PubMed Article CAS Google Scholar
- Amir, E. et al. Tissue confirmation of disease recurrence in breast cancer patients: pooled analysis of multi-centre, multi-disciplinary prospective studies. Cancer Treat. Rev. 38, 708–714 (2011).PubMed Article Google Scholar
- Amir, E. et al. Prospective study evaluating the impact of tissue confirmation of metastatic disease in patients with breast cancer. J. Clin. Oncol. 30, 587–592 (2012).Article PubMed PubMed Central Google Scholar
- Chia, S. Testing for discordance at metastatic relapse: does it matter? J. Clin. Oncol. 30, 575–576 (2012).PubMed Article Google Scholar
- Niikura, N. et al. Loss of human epidermal growth factor receptor 2 (HER2) expression in metastatic sites of HER2-overexpressing primary breast tumors. J. Clin. Oncol. 30, 593–599 (2012).Article PubMed PubMed Central Google Scholar
- Watanabe, T. et al. Heterogeneity of KRAS status may explain the subset of discordant KRAS status between primary and metastatic colorectal cancer. Dis. Colon Rectum 54, 1170–1178 (2011).PubMed Article Google Scholar
- Artale, S. et al. Mutations of KRAS and BRAF in primary and matched metastatic sites of colorectal cancer. J. Clin. Oncol. 26, 4217–4219 (2008).PubMed Article Google Scholar
- Kim, E. et al. The BATTLE trial: personalizing therapy for lung cancer. Cancer Discov. 1, 44–53 (2011).CAS PubMed PubMed Central Article Google Scholar
- Tran, B. et al. Feasibility of real time next generation sequencing of cancer genes linked to drug response: results from a clinical trial. Int. J. Cancer 132, 1547–1555 (2013).CAS PubMed Article Google Scholar
- Dancey, J. E., Bedard, P. L., Onetto, N. & Hudson, T. J. The genetic basis for cancer treatment decisions. Cell 148, 409–420 (2012).CAS PubMed Article Google Scholar
- Institute of Cancerology Gustave Roussy. Official launch of the clinical, academic and international trial WINTHER : a bioinformatics scoring system that predicts the response to known treatments for each patient [online], (2012).
- Tsimberidou, A. M. et al. Personalized medicine in a phase I clinical trials program: the MD Anderson Cancer Center Initiative. Clin. Cancer Res. 18, 6373–6383 (2012).CAS PubMed PubMed Central Article Google Scholar
- Wright, J. R. et al. Why cancer patients enter randomized clinical trials: exploring the factors that influence their decision. J. Clin. Oncol. 22, 4312–4318 (2004).PubMed Article Google Scholar
- Peppercorn, J. et al. Ethics of mandatory research biopsy for correlative end points within clinical trials in oncology. J. Clin. Oncol. 28, 2635–2640 (2010).PubMed PubMed Central Article Google Scholar
- Lee, J. M. et al. Feasibility and safety of sequential research-related tumor core biopsies in clinical trials. Cancer 119, 1357–1364 (2013).CAS PubMed Article Google Scholar
- Olson, E. M., Lin, N. U., Krop, I. E. & Winer, E. P. The ethical use of mandatory research biopsies. Nat. Rev. Clin. Oncol. 8, 620–625 (2011).PubMed PubMed Central Article Google Scholar
- Tam, A. L. et al. Feasibility of image-guided transthoracic core-needle biopsy in the BATTLE lung trial. J. Thorac. Oncol. 8, 436–442 (2013).Article PubMed Google Scholar
- Dowlati, A. et al. Sequential tumor biopsies in early phase clinical trials of anticancer agents for pharmacodynamic evaluation. Clin. Cancer Res. 7, 2971–2976 (2001).CAS PubMed Google Scholar
- Nazarian, L. N. et al. Safety and efficacy of sonographically guided random core biopsy for diffuse liver disease. J. Ultrasound Med. 19, 537–541 (2000).CAS PubMed Article Google Scholar
- Caliskan, K. C., Cakmakci, E., Celebi, I. & Basak, M. The importance of experience in percutaneous liver biopsies guided with ultrasonography: a lesion-focused approach. Acad. Radiol. 19, 256–259 (2012).PubMed Article Google Scholar
- Grant, A. & Neuberger, J. Guidelines on the use of liver biopsy in clinical practice. British Society of Gastroenterology. Gut 45 (Suppl. 4), IV1–IV11 (1999).PubMed PubMed Central Google Scholar
- Robertson, E. G. & Baxter, G. Tumour seeding following percutaneous needle biopsy: the real story! Clin. Radiol. 66, 1007–1014 (2011).CAS PubMed Article Google Scholar
- Agulnik, M., Oza, A. M., Pond, G. R. & Siu, L. L. Impact and perceptions of mandatory tumor biopsies for correlative studies in clinical trials of novel anticancer agents. J. Clin. Oncol. 24, 4801–4807 (2006).PubMed Article Google Scholar
- Wolf, S. M. et al. Managing incidental findings and research results in genomic research involving biobanks and archived data sets. Genet. Med. 14, 361–384 (2012).PubMed PubMed Central Article Google Scholar
- Bredenoord, A. L., Kroes, H. Y., Cuppen, E., Parker, M. & van Delden, J. J. Disclosure of individual genetic data to research participants: the debate reconsidered. Trends Genet. 27, 41–47 (2011).CAS Article Google Scholar
- Gymrek, M., McGuire, A. L., Golan, D., Halperin, E. & Erlich, Y. Identifying personal genomes by surname inference. Science 339, 321–324 (2013).CAS Article Google Scholar
- Aguilar-Mahecha, A. et al. Making personalized medicine a reality: the challenges of a modern translational research biopsy-driven program in an academic setting: the Segal Cancer Center experience. J. Med. Person. 9, 104–111 (2011).Article Google Scholar
- Ricci, D. S. et al. Global requirements for DNA sample collections: results of a survey of 204 ethics committees in 40 countries. Clin. Pharmacol. Ther. 89, 554–561 (2011).CAS PubMed Article Google Scholar
- Katona, T. M. et al. Genetically heterogeneous and clonally unrelated metastases may arise in patients with cutaneous melanoma. Am. J. Surg. Pathol. 31, 1029–1037 (2007).PubMed Article Google Scholar
- Liegl, B. et al. Heterogeneity of kinase inhibitor resistance mechanisms in GIST. J. Pathol. 216, 64–74 (2008).CAS PubMed PubMed Central Article Google Scholar
- Taniguchi, K., Okami, J., Kodama, K., Higashiyama, M. & Kato, K. Intratumor heterogeneity of epidermal growth factor receptor mutations in lung cancer and its correlation to the response to gefitinib. Cancer Sci. 99, 929–935 (2008).CAS PubMed PubMed Central Article Google Scholar
- Yancovitz, M. et al. Intra- and inter-tumor heterogeneity of BRAF(V600E) mutations in primary and metastatic melanoma. PLoS ONE 7, e29336 (2012).CAS PubMed PubMed Central Article Google Scholar
- Maley, C. C. et al. Genetic clonal diversity predicts progression to esophageal adenocarcinoma. Nat. Genet. 38, 468–473 (2006).CAS PubMed Article Google Scholar
- Mehra, R. et al. Characterization of bone metastases from rapid autopsies of prostate cancer patients. Clin. Cancer Res. 17, 3924–3932 (2011).CAS PubMed PubMed Central Article Google Scholar
- Aguilar-Mahecha, A. et al. Study of pre-analytical variables in plasma and breast biopsies to be used for proteomic and genomic studies [online], Biorepositories and Biospecimen Research Branch http://biospecimens.cancer.gov/meeting/brnsymposium/2011/Posters/Aguilar-508.pdf (2011).Google Scholar
- Diaz, Z. et al. Next-generation biobanking of metastases to enable multidimensional molecular profiling in personalized medicine. Mod. Pathol. http://dx.doi.org/10.1038/modpathol.2013.81.
- Pusztai, L. et al. Gene expression profiles obtained from fine-needle aspirations of breast cancer reliably identify routine prognostic markers and reveal large-scale molecular differences between estrogen-negative and estrogen-positive tumors. Clin. Cancer Res. 9, 2406–2415 (2003).CAS PubMed Google Scholar
- Willems, S. M., van Deurzen, C. H. & van Diest, P. J. Diagnosis of breast lesions: fine-needle aspiration cytology or core needle biopsy? A review. J. Clin. Pathol. 65, 287–292 (2012).CAS PubMed Article Google Scholar
- von Renteln, D. et al. A novel flexible cryoprobe for EUS-guided pancreatic biopsies. Gastrointest. Endosc. 77, 784–792 (2013).PubMed Article Google Scholar
- Hetzel, J. et al. Cryobiopsy increases the diagnostic yield of endobronchial biopsy: a multicentre trial. Eur. Respir. J. 39, 685–690 (2012).CAS PubMed Article Google Scholar
- Schumann, C. et al. Cryoprobe biopsy increases the diagnostic yield in endobronchial tumor lesions. J. Thorac. Cardiovasc. Surg. 140, 417–421 (2010).PubMed Article Google Scholar
- Masuda, N., Ohnishi, T., Kawamoto, S., Monden, M. & Okubo, K. Analysis of chemical modification of RNA from formalin-fixed samples and optimization of molecular biology applications for such samples. Nucleic Acids Res. 27, 4436–4443 (1999).CAS PubMed PubMed Central Article Google Scholar
- Srinivasan, M., Sedmak, D. & Jewell, S. Effect of fixatives and tissue processing on the content and integrity of nucleic acids. Am. J. Pathol. 161, 1961–1971 (2002).CAS PubMed PubMed Central Article Google Scholar
- Klockenbusch, C., O’Hara, J. E. & Kast, J. Advancing formaldehyde cross-linking towards quantitative proteomic applications. Anal. Bioanal. Chem. 404, 1057–1067 (2012).CAS PubMed Article Google Scholar
- Reis, P. P. et al. mRNA transcript quantification in archival samples using multiplexed, color-coded probes. BMC Biotechnol. 11, 46 (2011).CAS PubMed PubMed Central Article Google Scholar
- Malkov, V. A. et al. Multiplexed measurements of gene signatures in different analytes using the Nanostring nCounter Assay System. BMC Res. Notes 2, 80 (2009).PubMed PubMed Central Article CAS Google Scholar
- Holley, T. et al. Deep clonal profiling of formalin fixed paraffin embedded clinical samples. PLoS ONE 7, e50586 (2012).CAS PubMed PubMed Central Article Google Scholar
- Tuononen, K. et al. Comparison of targeted next-generation sequencing (NGS) and real-time PCR in the detection of EGFR, KRAS, and BRAF mutations on formalin-fixed, paraffin-embedded tumor material of non-small cell lung carcinoma-superiority of NGS. Genes Chromosomes Cancer 52, 503–511 (2013).CAS PubMed Article Google Scholar
- Florell, S. R. et al. Preservation of RNA for functional genomic studies: a multidisciplinary tumor bank protocol. Mod. Pathol. 14, 116–128 (2001).CAS PubMed Article Google Scholar
- Hatzis, C. et al. Effects of tissue handling on RNA integrity and microarray measurements from resected breast cancers. J. Natl Cancer Inst. 103, 1871–1883 (2011).CAS PubMed PubMed Central Article Google Scholar
- Chowdary, D. et al. Prognostic gene expression signatures can be measured in tissues collected in RNAlater preservative. J. Mol. Diagn. 8, 31–39 (2006).CAS PubMed PubMed Central Article Google Scholar
- Przybytkowski, E., Aguilar-Mahecha, A., Nabavi, S., Tonellato, P. J. & Basik, M. Ultradense array CGH and discovery of micro-copy number alterations and gene fusions in the cancer genome. Methods Mol. Biol. 973, 15–38 (2013).CAS PubMed PubMed Central Article Google Scholar
- Belloni, B. et al. Will PAXgene substitute formalin? A morphological and molecular comparative study using a new fixative system. J. Clin. Pathol. 66, 124–135 (2013).CAS PubMed Article Google Scholar
- Kap, M. et al. Histological assessment of PAXgene tissue fixation and stabilization reagents. PLoS ONE 6, e27704 (2011).CAS PubMed PubMed Central Article Google Scholar
- Groelz, D. et al. Non-formalin fixative versus formalin-fixed tissue: a comparison of histology and RNA quality. Exp. Mol. Pathol. 94, 188–194 (2013).CAS PubMed Article Google Scholar
- Botling, J. & Micke, P. Biobanking of fresh frozen tissue from clinical surgical specimens: transport logistics, sample selection, and histologic characterization. Methods Mol. Biol. 675, 299–306 (2011).CAS PubMed Article Google Scholar
- Ellis, M. et al. Development and validation of a method for using breast core needle biopsies for gene expression microarray analyses. Clin. Cancer Res. 8, 1155–1166 (2002).CAS PubMed Google Scholar
- Ono, M. et al. Tumor-infiltrating lymphocytes are correlated with response to neoadjuvant chemotherapy in triple-negative breast cancer. Breast Cancer Res. Treat. 132, 793–805 (2012).CAS PubMed Article Google Scholar
- Loi, S. et al. Prognostic and predictive value of tumor-infiltrating lymphocytes in a phase III randomized adjuvant breast cancer trial in node-positive breast cancer comparing the addition of docetaxel to doxorubicin with doxorubicin-based chemotherapy: BIG 02–98 J. Clin. Oncol. 31, 860–867 (2013).CAS PubMed Article Google Scholar
- Cancer Genome Atlas Research Network. Integrated genomic analyses of ovarian carcinoma. Nature 474, 609–615 (2011).
- Cancer Genome Atlas Research Network. Comprehensive molecular characterization of human colon and rectal cancer. Nature 487, 330–337 (2012).
- Biankin, A. V. et al. Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes. Nature 491, 399–405 (2012).CAS PubMed PubMed Central Article Google Scholar
- Esgueva, R. et al. Next-generation prostate cancer biobanking: toward a processing protocol amenable for the International Cancer Genome Consortium. Diagn. Mol. Pathol. 21, 61–68 (2012).CAS PubMed PubMed Central Article Google Scholar
- Golubeva, Y., Salcedo, R., Mueller, C., Liotta, L. A. & Espina, V. Laser capture microdissection for protein and NanoString RNA analysis. Methods Mol. Biol. 931, 213–257 (2013).CAS PubMed PubMed Central Article Google Scholar
- Yuan, Y. et al. Quantitative image analysis of cellular heterogeneity in breast tumors complements genomic profiling. Sci. Transl. Med. 4, 157ra143 (2012).PubMed Article Google Scholar
- Ki, D. H. et al. Whole genome analysis for liver metastasis gene signatures in colorectal cancer. Int. J. Cancer 121, 2005–2012 (2007).CAS PubMed Article Google Scholar
- Türeci, O. et al. Computational dissection of tissue contamination for identification of colon cancer-specific expression profiles. FASEB J. 17, 376–385 (2003).PubMed Article Google Scholar
- Kotorashvili, A. et al. Effective DNA/RNA co-extraction for analysis of microRNAs, mRNAs, and genomic DNA from formalin-fixed paraffin-embedded specimens. PLoS ONE 7, e34683 (2012).CAS PubMed PubMed Central Article Google Scholar
- Soares, A. R., Pereira, P. M. & Santos, M. A. Next-generation sequencing of miRNAs with Roche 454 GS-FLX technology: steps for a successful application. Methods Mol. Biol. 822, 189–204 (2012).CAS PubMed Article Google Scholar
- Moore, H. M., Compton, C. C., Alper, J. & Vaught, J. B. International approaches to advancing biospecimen science. Cancer Epidemiol. Biomarkers Prev. 20, 729–732 (2011).PubMed PubMed Central Article Google Scholar
- Pazzagli, M. et al. SPIDIA-RNA: first external quality assessment for the pre-analytical phase of blood samples used for RNA based analyses. Methods 59, 20–31 (2013).CAS PubMed Article Google Scholar
- Moore, H. M. The NCI Biospecimen Research Network. Biotech. Histochem. 87, 18–23 (2012).CAS PubMed Article Google Scholar
- National Cancer Institute. Biospecimen Research Database [online], (2013).
- Nature Publishing Group. About protocol exchange. Protocol Exchange [online], (2013).
- Aguilar-Mahecha, A., Kuzyk, M. A., Domanski, D., Borchers, C. H. & Basik, M. The effect of pre-analytical variability on the measurement of MRM-MS-based mid- to high-abundance plasma protein biomarkers and a panel of cytokines. PLoS ONE 7, e38290 (2012).CAS PubMed PubMed Central Article Google Scholar
- Begley, C. G. & Ellis, L. M. Drug development: Raise standards for preclinical cancer research. Nature 483, 531–533 (2012).CAS PubMed Article Google Scholar
- Simeon-Dubach, D., Burt, A. D. & Hall, P. A. Quality really matters: the need to improve specimen quality in biomedical research. J. Pathol. http://dx.doi.org/10.1002/path.4117 (2012).
- Ransohoff, D. F. & Gourlay, M. L. Sources of bias in specimens for research about molecular markers for cancer. J. Clin. Oncol. 28, 698–704 (2010).PubMed Article Google Scholar
- Taube, S. E. et al. A perspective on challenges and issues in biomarker development and drug and biomarker codevelopment. J. Natl Cancer Inst. 101, 1453–1463 (2009).PubMed PubMed Central Article Google Scholar
- Silberman, S. Libraries of flesh: the sorry state of human tissue storage. WIRED Magazine (24 May 2010).Google Scholar
- Massett, H. A. et al. Assessing the need for a standardized cancer HUman Biobank (caHUB): findings from a national survey with cancer researchers. J. Natl Cancer Inst. Monogr. 2011, 8–15 (2011).PubMed Article Google Scholar
- Betsou, F. et al. Standard preanalytical coding for biospecimens: defining the sample PREanalytical code. Cancer Epidemiol. Biomarkers Prev. 19, 1004–1011 (2010).CAS PubMed Article Google Scholar
- Moore, H. M. et al. Biospecimen reporting for improved study quality (BRISQ). Cancer Cytopathol. 119, 92–101 (2011).PubMed Article Google Scholar
- Strand, C., Enell, J., Hedenfalk, I. & Fernö, M. RNA quality in frozen breast cancer samples and the influence on gene expression analysis–a comparison of three evaluation methods using microcapillary electrophoresis traces. BMC Mol. Biol. 8, 38 (2007).PubMed PubMed Central Article CAS Google Scholar
- Kennedy, R. D. et al. Development and independent validation of a prognostic assay for stage II colon cancer using formalin-fixed paraffin-embedded tissue. J. Clin. Oncol. 29, 4620–4626 (2011).PubMed Article Google Scholar
- Georgiou, C. D., Papapostolou, I. & Grintzalis, K. Protocol for the quantitative assessment of DNA concentration and damage (fragmentation and nicks). Nat. Protoc. 4, 125–131 (2009).CAS PubMed Article Google Scholar
- Esserman, L. J. et al. Chemotherapy response and recurrence-free survival in neoadjuvant breast cancer depends on biomarker profiles: results from the I-SPY 1 TRIAL (CALGB 150007/150012; ACRIN 6657). Breast Cancer Res. Treat. 132, 1049–1062 (2012).CAS PubMed Article Google Scholar
- Nadkarni, P. M., Kemp, R. & Parikh, C. R. Leveraging a clinical research information system to assist biospecimen data and workflow management: a hybrid approach. J. Clin. Bioinforma 1, 22 (2011).PubMed PubMed Central Article Google Scholar
- Welinder, C. et al. Establishing a Southern Swedish Malignant Melanoma OMICS and biobank clinical capability. Clin. Transl. Med. 2, 7 (2013).PubMed PubMed Central Article Google Scholar
- National Cancer Informatics Program. NCIP Launch Meeting Summary Report (05/31/2012). National Cancer Informatics Program Launch Meeting [online], (2012).
- UC Santa Cruz. UCSC Cancer Genomics Browser [online], (2013).
- Goldman, M. et al. The UCSC Cancer Genomics Browser: update 2013. Nucleic Acids Res. 41, D949–D954 (2013).CAS PubMed Article Google Scholar
- Schroeder, M. P., Gonzalez-Perez, A. & Lopez-Bigas, N. Visualizing multidimensional cancer genomics data. Genome Med. 5, 9 (2013).PubMed PubMed Central Article Google Scholar
- Gomez-Roca, C. A. et al. Sequential research-related biopsies in phase I trials: acceptance, feasibility and safety. Ann. Oncol. 23, 1301–1306 (2012).CAS Article PubMed Google Scholar
- Baker, M. Biorepositories: Building better biobanks. Nature 486, 141–146 (2012).CAS PubMed Article Google Scholar
- Matzke, E. A. M. et al. Certification for biobanks: the program developed by the Canadian Tumor Repository Network (CTRNet). Biopreserv. Biobank. 10, 426–432 (2012).PubMed Article Google Scholar
- Harris, J. R. et al. Toward a roadmap in global biobanking for health. Eur. J. Hum. Genet. 20, 1105–1111 (2012).PubMed PubMed Central Article Google Scholar
- Watson, R. W., Kay, E. W. & Smith, D. Integrating biobanks: addressing the practical and ethical issues to deliver a valuable tool for cancer research. Nat. Rev. Cancer 10, 646–651 (2010).CAS PubMed Article Google Scholar
- Fenstermacher, D. A., Wenham, R. M., Rollison, D. E. & Dalton, W. S. Implementing personalized medicine in a cancer center. Cancer J. 17, 528–536 (2011).PubMed PubMed Central Article Google Scholar
- Yachida, S. & Iacobuzio-Donahue, C. A. Evolution and dynamics of pancreatic cancer progression. Oncogene http://dx.doi.org/10.1038/onc.2013.29 (2013).
- Nik-Zainal, S. et al. The life history of 21 breast cancers. Cell 149, 994–1007 (2012).CAS PubMed PubMed Central Article Google Scholar
- Giordano, A. & Cristofanilli, M. CTCs in metastatic breast cancer. Recent Results Cancer Res. 195, 193–201 (2012).PubMed Article Google Scholar
- Jacot, W. et al. Lack of EGFR-activating mutations in European patients with triple-negative breast cancer could emphasise geographic and ethnic variations in breast cancer mutation profiles. Breast Cancer Res. 13, R133 (2011).CAS PubMed PubMed Central Article Google Scholar
- Rodig, S. J. et al. Unique clinicopathologic features characterize ALK-rearranged lung adenocarcinoma in the western population. Clin. Cancer Res. 15, 5216–5223 (2009).CAS PubMed PubMed Central Article Google Scholar
- Calvo, E. & Baselga, J. Ethnic differences in response to epidermal growth factor receptor tyrosine kinase inhibitors. J. Clin. Oncol. 24, 2158–2163 (2006).CAS PubMed Article Google Scholar
- Mudur, G. Indian scientists object to export of human biological material for research. BMJ 325, 990 (2002).PubMed Central Article Google Scholar
- Barker, A. D. et al. I-SPY 2: an adaptive breast cancer trial design in the setting of neoadjuvant chemotherapy. Clin. Pharmacol. Ther. 86, 97–100 (2009).CAS PubMed PubMed Central Article Google Scholar
Acknowledgements
The authors would like to recognize the Interventional Radiology Department at the Jewish General Hospital (especially Andre Constantin and Errol Camlioglu), the Pathology Group from Hôpital du Saint-Sacrement (especially Benoit Têtu and Michèle Orain) and the Jewish General Hospital (Adrian Gologan and Tina Haliotis) and the laboratory of Koren Mann, for contributing their expertise to the collection and processing of high-quality biospecimens. The authors would like to thank both Thérèse Gagnon-Kugler and Suzan McNamara of the Québec Clinical Research Organization in Cancer for their valuable comments in drafting the manuscript. We would like to acknowledge support from the FRQS-Réseau de Recherche sur le Cancer, Genome Québec and the Québec Breast Cancer Foundation.
Author information
Affiliations
- Departments of Surgery and Oncology, Jewish General Hospital, McGill University, 3755 Côte Sainte Catherine Road, Montreal, H3T 1E2, QC, CanadaMark Basik
- Department of Oncology, Jewish General Hospital, McGill University, 3755 Côte Sainte Catherine Road, Montreal, H3T 1E2, QC, CanadaAdriana Aguilar-Mahecha
- Québec Clinical Research Organization in Cancer (Q-CROC), Jewish General Hospital, McGill University, 3755 Côte Sainte Catherine Road, Montreal, H3T 1E2, QC, CanadaCaroline Rousseau & Zuanel Diaz
- Department of Pathology, Jewish General Hospital, McGill University, 3755 Côte Sainte Catherine Road, Montreal, H3T 1E2, QC, CanadaAlan Spatz
- Departments of Oncology, Epidemiology, Biostatistics and Occupational Health, and Human Genetics, Jewish General Hospital, McGill University, 3755 Côte Sainte Catherine Road, Montreal, H3T 1E2, QC, CanadaCelia M. T. Greenwood
- Department of Oncology, Segal Cancer Centre, Jewish General Hospital, McGill University, 3755 Côte Sainte Catherine Road, Montreal, H3T 1E2, QC, CanadaGerald Batist
- Department of Digestive Oncology and Center for Human Genetics, University Hospital Gasthuisberg, Herestraat 49, Leuven, B-3000, BelgiumSabine Tejpar
Contributions
A. Aguila-Mahecha, M. Basik, G. Batist, Z. Diaz and C. Rousseau researched data and wrote the manuscript. C. M. T. Greenwood, A. Spatz and S. Tejpar made substantial contribution to discussion of content. All authors reviewed and edited the manuscript before submission.
Corresponding author
Correspondence to Gerald Batist.
Ethics declarations
Competing interests
The authors declare no competing financial interests.